Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 24(1): 27-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36068367

RESUMO

During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.


Assuntos
Infertilidade , Sêmen , Animais , Feminino , Masculino , Humanos , Oócitos/metabolismo , Aneuploidia , Meiose , Envelhecimento/genética , Segregação de Cromossomos/genética , Infertilidade/metabolismo , Mamíferos
2.
Nat Commun ; 12(1): 4061, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210982

RESUMO

PIWI proteins use guide piRNAs to repress selfish genomic elements, protecting the genomic integrity of gametes and ensuring the fertility of animal species. Efficient transposon repression depends on amplification of piRNA guides in the ping-pong cycle, which in Drosophila entails tight cooperation between two PIWI proteins, Aub and Ago3. Here we show that post-translational modification, symmetric dimethylarginine (sDMA), of Aub is essential for piRNA biogenesis, transposon silencing and fertility. Methylation is triggered by loading of a piRNA guide into Aub, which exposes its unstructured N-terminal region to the PRMT5 methylosome complex. Thus, sDMA modification is a signal that Aub is loaded with piRNA guide. Amplification of piRNA in the ping-pong cycle requires assembly of a tertiary complex scaffolded by Krimper, which simultaneously binds the N-terminal regions of Aub and Ago3. To promote generation of new piRNA, Krimper uses its two Tudor domains to bind Aub and Ago3 in opposite modification and piRNA-loading states. Our results reveal that post-translational modifications in unstructured regions of PIWI proteins and their binding by Tudor domains that are capable of discriminating between modification states is essential for piRNA biogenesis and silencing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Proteínas de Transporte/química , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Masculino , Metilação , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Domínios Proteicos , Proteína-Arginina N-Metiltransferases , RNA Interferente Pequeno/química
3.
Trends Cell Biol ; 27(1): 55-68, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773484

RESUMO

Eggs and sperm develop through a specialized cell division called meiosis. During meiosis, the number of chromosomes is reduced by two sequential divisions in preparation for fertilization. In human female meiosis, chromosomes frequently segregate incorrectly, resulting in eggs with an abnormal number of chromosomes. When fertilized, these eggs give rise to aneuploid embryos that usually fail to develop. As women become older, errors in meiosis occur more frequently, resulting in increased risks of infertility, miscarriage, and congenital syndromes, such as Down's syndrome. Here, we review recent studies that identify the mechanisms causing aneuploidy in female meiosis, with a particular emphasis on studies in humans.


Assuntos
Aneuploidia , Óvulo/metabolismo , Envelhecimento/fisiologia , Humanos , Meiose , Modelos Biológicos , Óvulo/citologia , Fuso Acromático/metabolismo
4.
Adv Exp Med Biol ; 886: 51-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26659487

RESUMO

Transposable elements (TEs) have the capacity to replicate and insert into new genomic locations. This contributs significantly to evolution of genomes, but can also result in DNA breaks and illegitimate recombination, and therefore poses a significant threat to genomic integrity. Excess damage to the germ cell genome results in sterility. A specific RNA silencing pathway, termed the piRNA pathway operates in germ cells of animals to control TE activity. At the core of the piRNA pathway is a ribonucleoprotein complex consisting of a small RNA, called piRNA, and a protein from the PIWI subfamily of Argonaute nucleases. The piRNA pathway relies on the specificity provided by the piRNA sequence to recognize complementary TE targets, while effector functions are provided by the PIWI protein. PIWI-piRNA complexes silence TEs both at the transcriptional level - by attracting repressive chromatin modifications to genomic targets - and at the posttranscriptional level - by cleaving TE transcripts in the cytoplasm. Impairment of the piRNA pathway leads to overexpression of TEs, significantly compromised genome structure and, invariably, germ cell death and sterility.The piRNA pathway is best understood in the fruit fly, Drosophila melanogaster, and in mouse. This Chapter gives an overview of current knowledge on piRNA biogenesis, and mechanistic details of both transcriptional and posttranscriptional TE silencing by the piRNA pathway. It further focuses on the importance of post-translational modifications and subcellular localization of the piRNA machinery. Finally, it provides a brief description of analogous pathways in other systems.


Assuntos
Elementos de DNA Transponíveis , Genoma Humano/fisiologia , Genoma de Inseto/fisiologia , Instabilidade Genômica , Interferência de RNA/fisiologia , RNA Interferente Pequeno/metabolismo , Animais , Drosophila melanogaster , Humanos , Camundongos , RNA Interferente Pequeno/genética
5.
Mol Cell ; 59(4): 564-75, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26295961

RESUMO

In Drosophila, two Piwi proteins, Aubergine (Aub) and Argonaute-3 (Ago3), localize to perinuclear "nuage" granules and use guide piRNAs to target and destroy transposable element transcripts. We find that Aub and Ago3 are recruited to nuage by two different mechanisms. Aub requires a piRNA guide for nuage recruitment, indicating that its localization depends on recognition of RNA targets. Ago3 is recruited to nuage independently of a piRNA cargo and relies on interaction with Krimper, a stable component of nuage that is able to aggregate in the absence of other nuage proteins. We show that Krimper interacts directly with Aub and Ago3 to coordinate the assembly of the ping-pong piRNA processing (4P) complex. Symmetrical dimethylated arginines are required for Aub to interact with Krimper, but they are dispensable for Ago3 to bind Krimper. Our study reveals a multi-step process responsible for the assembly and function of nuage complexes in piRNA-guided transposon repression.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Cinética , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo
6.
Methods Mol Biol ; 1117: 273-313, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24357368

RESUMO

Immunocytochemistry for electron microscopy provides important information on the location and relative abundance of proteins inside cells. Gaining access to this information without extracting or disrupting the location of target proteins requires specialized preparation methods. Sectioning frozen blocks of chemically fixed and cryoprotected biological material is one method for obtaining immunocytochemical data. Once the cells or tissues are cut, the cryosections are thawed, mounted onto coated grids, and labeled with specific antibodies and colloidal gold probes. They are then embedded in a thin film of plastic containing a contrasting agent. Subcellular morphology can then be correlated with specific affinity labeling by examination in the transmission electron microscope (TEM). The major advantage of using thawed cryosections for immunolabeling is that the sections remain fully hydrated through the immunolabeling steps, reducing the possibility of dehydration-induced antigen modification. Modern technical advancements both in preparation protocols and equipment design make cryosectioning a routine and rapid approach for immunocytochemistry that may provide increased sensitivity for some antibodies.


Assuntos
Criopreservação/métodos , Crioultramicrotomia/métodos , Imuno-Histoquímica/métodos , Fixação de Tecidos/métodos , Microscopia Eletrônica de Transmissão/métodos , Microscopia Imunoeletrônica/métodos
7.
Genes Dev ; 27(4): 390-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23392610

RESUMO

In the metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) provide a defense system against the expression of transposable elements. In the cytoplasm, piRNA sequences guide piwi complexes to destroy complementary transposon transcripts by endonucleolytic cleavage. However, some piwi family members are nuclear, raising the possibility of alternative pathways for piRNA-mediated regulation of gene expression. We found that Drosophila Piwi is recruited to chromatin, colocalizing with RNA polymerase II (Pol II) on polytene chromosomes. Knockdown of Piwi in the germline increases expression of transposable elements that are targeted by piRNAs, whereas protein-coding genes remain largely unaffected. Derepression of transposons upon Piwi depletion correlates with increased occupancy of Pol II on their promoters. Expression of piRNAs that target a reporter construct results in a decrease in Pol II occupancy and an increase in repressive H3K9me3 marks and heterochromatin protein 1 (HP1) on the reporter locus. Our results indicate that Piwi identifies targets complementary to the associated piRNA and induces transcriptional repression by establishing a repressive chromatin state when correct targets are found.


Assuntos
Proteínas Argonautas/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inativação Gênica , RNA Interferente Pequeno/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Feminino , Cromossomos Politênicos/metabolismo , RNA Interferente Pequeno/genética
8.
AIDS ; 24(11): 1633-40, 2010 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-20597163

RESUMO

OBJECTIVE: Increasing data support a role for antibody-dependent cellular cytotoxicity (ADCC) in controlling HIV-1 infection. We recently isolated a naturally occurring dimeric form of the anti-HIV-1 antibody 2G12 and found it to be significantly more potent than 2G12 monomer in neutralizing primary virus strains. However, given the unusual structure of dimeric 2G12 with two Fc regions, it was not clear whether 2G12 dimer could bind to the CD16 Fc receptor on ADCC effector cells or trigger ADCC. Here we compared the in-vitro ADCC activities of 2G12 monomer and dimer and investigated the effects of including ADCC-enhancing mutations in both forms of 2G12. METHODS: An in-vitro ADCC assay using target cells stably expressing gp160 was developed to evaluate the activities of 2G12 monomer and dimer with and without ADCC-enhancing mutations that increase the CD16-binding affinity of the 2G12 Fc region. RESULTS: Both 2G12 monomer and 2G12 dimer elicited ADCC, although the dimer showed increased potency [lower half-maximal concentration (EC(50))] in triggering ADCC, thus confirming its ability to bind CD16 and trigger ADCC. The ADCC-enhancing mutations improved the ADCC activity of 2G12 monomer more than 2G12 dimer such that their EC(50) values were nearly equal. However, no increase in nonspecific ADCC activity was observed using 2G12 IgGs with these mutations. CONCLUSION: Given the likelihood that ADCC plays a role in protecting against initial infection and/or controlling chronic infection, these data suggest 2G12 dimers and/or addition of ADCC-enhancing mutations could augment the prophylactic and/or therapeutic potential of 2G12.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Citotoxicidade Celular Dependente de Anticorpos/genética , Anticorpos Amplamente Neutralizantes , Moléculas de Adesão Celular/genética , Células Cultivadas , Proteínas Ligadas por GPI , Proteína gp160 do Envelope de HIV/metabolismo , Humanos , Imunoglobulina G/imunologia , Mutação , Multimerização Proteica , Receptores de IgG/metabolismo
9.
Methods Mol Biol ; 369: 257-89, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17656755

RESUMO

Immunocytochemistry for transmission electron microscopy provides important information on the location and relative abundance of proteins inside cells. Gaining access to this information without extracting or disrupting the location of target proteins requires specialized preparation methods. Sectioning frozen blocks of chemically fixed and cryoprotected biological material is one method for obtaining immunocytochemical data. Once the cells or tissues are cut, the thawed cryosections can be labeled with specific antibodies and colloidal gold probes. They are then embedded in a thin film of plastic containing a contrasting agent. Subcellular morphology can be correlated with specific affinity labeling by examination in the transmission electron microscope. Modern technical advancements both in preparation protocols and equipment design make cryosectioning a routine and rapid approach for immunocytochemistry that may provide increased sensitivity for some antibodies.


Assuntos
Crioultramicrotomia/métodos , Imuno-Histoquímica/métodos , Microscopia Imunoeletrônica/métodos , Animais , Bovinos , Crioultramicrotomia/instrumentação , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Fixadores , Glutaral , Ilhotas Pancreáticas/ultraestrutura , Camundongos , Mucosa Nasal/metabolismo , Mucosa Nasal/ultraestrutura , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...